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Ising-Like Field Theory 

C. C a m m a r o t a  1 
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A field theory model on R 2 in which the basic fields are Ising spins instead of 
Gaussian spins is examined. Using statistical mechanics techniques we discuss 
the ultraviolet and the infrared problems. In particular we discuss a technique 
yielding the asymptotic expansion in ~ of the ground state energy, as ~ ~ 0, 
without using the cluster expansion. 
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1. I N T R O D U C T I O N  A N D  D E S C R I P T I O N  OF THE M O D E L  

We propose a field theory model which allows us to clarify the statistical 
mechanics aspects of the ultraviolet and infrared problems that occur in ~4 
Euclidean field theory. In recent years the Markov hierarchical model (1) 
has been introduced with the same purpose. Our model relies on the same 
basic idea, i.e., to decompose the field in elementary fields of well-defined 
distribution, but we use Ising model fields at large temperatures instead of 
Gaussian fields. We will show in two space-time dimensions the stability of 
the model and the existence of the pressure, corresponding to the ground 
state density of energy. In the case of the Markov hierarchical model the 
stability has been shown in two and three dimensions; the existence of the 
pressure is still an open problem. 

We now give a description of the model. QN is a partition of R 2 
obtained paving the plane with square tesserae of side 2-U;  we choose the 
sequence ( QN )~r such that each tessera A s E QN is exactly paved by 
tesserae of Q~r We consider over the o algebra generated by the 
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cylinders of ~2 N = ( - 1, 1 ) QN the equilibrium measure PN of the Ising model 
over Qu at large temperature f l -  1 and zero external field. (2) Let us define 
the space ~(u) N ~v = IIk=0~2k and the product measure p(N) = iik=oPk. We 
then assume as free field with ultraviolet cutoff the family of random 
variables over ~2 ~u) indexed by R 2 defined by 

N 
q0~ N) = E OAk(f)' ~ E  R 2 

k = O  

where Ak(~ ) is the tessera of Qk containing ~ and oa, ~ ( -  1, 1 } denotes the 
Ising spin variable at A k, and also its natural extension to a random 
variable over ~2 ~r . 

There are some obvious remarks. The field ~N),  ~ ~ R2, is the sum of 
N + 1 independent fields and 

[r I < N +  1 

q0 ~u) is constant in each tessera Au; it has zero mean 

= 0 

and covariance 

N 

k=0  

The covariance has a sort of logarithmic divergence as [~ -  71[-->0 because 
if ~,71 E AN_ l and I~ -  T/I > 2-~v, it follows that 

Since we want to study an interacting theory of q0 4 type, we must 
introduce an interaction containing subtractions depending on the measure 
p(N) we have chosen. This can be done using the general definition of 
Wick powers contained in Ref. 3, as summarized below. 

If x is a random variable over (X, Y.,/x) with finite moments, the Wick 
powers of x are defined recursively by 

"xO: = 1 

d :x~: 1. (n >/ 1) = t , l : X  n -  

( : x " : )  = 0 (n >/ 1) 

We obtain, for instance, if (x k) = 0 for k odd, 

:X4: = X 4 --  6(X2)X 2 -- (X 4) + 6(X2) 2 

So we have, for each N /> 0, after an easy computation, 

]q0tN)4: = q0~ N)4 --  6(N + 1)q0~ N)2 + 3 N  2 + 8N + 5 
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We define the renormalized interaction as 

where ~ is a positive constant and A is a bounded regular region of R 2. 
V(h N) enjoys the following property that will be central in removing the 
ultraviolet divergence 

f dP N V~ u) = V(A N- ') (1) 

This follows from the equation that holds if x and y are independent: 
n ".(X "l-]2)n'."~'~(~):X k'. :yn-k: 

putting ~0~ N) = ~ u - 1 )  + traN(~). Furthermore there is a constant a > 0 such 
that for N >/0 

I c~N)i -<< XaN4[A[ 

where [A] is the area of A. 
The partition function is 

Z (N) = fdP (N)e - v•u) 

and the pressure with ultraviolet and infrared cutoff is 

p(A N) = 1 IogZA(N) 
IAI 

We work in a range of temperature given by fl .<< fl0, where flo, defined 
below, is smaller than the inverse critical temperature. The following 
proposition is our result. 

Proposition 1 (Existence of the Pressure). Let fl < flo; then the limit 

lim p~V) 
N--+ oo 
A--> or 

exists if the limit in A is taken in the sense of Van Hove. (For the Van Hove 
limit see Ref. 4.) In the proof we will use some important properties of the 
measure IN, well known in the theory of the two-dimensional Ising model. 
We expose them briefly. 

Denote by A N a finite subset of R 2 paved by QN, -AN its complement, 
and OA N the external boundary of Alv thought of as a subset of QN. Let OAN 
and o~N be configurations over A N and A N and Pu(daAu loAN) the condi- 
tional probability of the cylindrical event defined by OAN with respect to the 

algebra of the events with base in AN. PN has the Markov property, i.e., 

PN(aOAN I O N) = P (d% I 
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Let A~v be a finite subset at a distance dN(AN, A~v ) from AN, where d N is the 
Euclidean distance in units of 2 -N. We define ~/(%~, %; )  such that 

PN (d~ [OA~) = PN (d~ exp 7/(baN, aA~ ) 

The following proposition holds. O) 

Propo$1Uon 2. There is a positive constant A and a function X(/3) 
such that lim~_mX (/3) = + ~ and 

I~/(aA~, oA;~)I < min( [0AN], [0A~v] }A exp[ -X(/3)dN(AN, A~v)] 

([bAn] is the number of tesserae of bAn. ) 

This proposition allows us to relate the integrals fdPNV~c if) and 

fdPNexp(--V~c~ )) to the conditioned integrals fdPNrB,. Njar/'(N)--c~ and 
fdeN(BN)exp(-V~c~)), where the sequences of sets (BN)N>~I and 
{ CN)N> l are such that: the sequences of their areas are bounded, the sets 
(A N [A N (') B s ~ O) and (A N I AN [") C N ::7/= 0) are disjoint, [OBN] = 0(2N), 
and PN(BN) denotes the measure PN conditioned to the variables over the 
set (A N ]A N N B N =/= 0}. 

In the case d(B N, CN) > 1, Proposition 2, with dg(BN, CN) > 2 N gives, 
introducing an obvious notation, 

f dPN exp[- exp( • [aBN]A exp[- X(/3)2N] ) 

Let be /30 such that for /3 <<. rio, X(/3) > 1. In this range of temperature, 
which we assume from now on, the argument of the exponential is [bBN] 
O(e-2~). In the general case we introduce C N = (A N N C N ~ 0 [du(AN, BN) 
~< N }, decompose the energy 

and write 

v(N)_ 

We apply Proposition 2, with dN(B N, Cu\CN) > N: 

i f dl"N(BN - ( d e , ,  V( NL < XaN4ICN]Iexp(A[OBN]e -N) -- 1[ ) c~\cu d cN\cu 

(2) 
Using Eq. (1) we can write 

vSN)+ V~c~\~) • O(N4ZNe-N)[CN[ 
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From 

we have 
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IVA N) < XaN4[CN[ CN 

f dP s (B s ) e x p ( -  K(c N) ) ~ f dP s (B N ) e x p ( -  g(Nt. �9 cN\c,~ )exp(++_~taN4[Csl) 

We can conveniently estimate the error in the case that 

I(AuId(A u , B  N) < N}[ = [OBN]O(N2-2N) 
In fact we have, afortiori, ]CNI = O(N2-N) and so the error is O(N52-N). 
Using Proposition 2 we find 

f dPu(B u ) e x p ( -  v(s~-" cN,c~ )<> f de~exp(- K (Nl-cN\c~ ) exp( + A[OBN]e -u ) 

and finally we can write 

fdP  s (B u )exp( - K(c~ ) ) 

f dPNexp(-- K(c~ ) )exp( + 2XaN4ICu[ + A[ OBN]e -N) 

We summarize the above considerations, which are the basic ingredients in 
the proof of our results, in the following lemma. 

L e m m a l .  Let b e f l <  flo: 

('jdP•(BN) v'(N)c~ ~ fdPN(BN ) v~N)+cN V(c~c~ )+- O(N42Ne-N)[CN[ (3) 

If (BN}N>~1 is such that [(A s [dN(AN, Bu) < N}[ = [OBN]O(NZ-2N), then 

(BN)exp(- V,(c;' ) 

% f deNexp(-V,(c2 ) )exp(  +[OBivJO(N'2 -2N + e-N)} (4) 

If d(BN, CN) > 1, then 

_ U v fdPx(Bu)eXp(-- (C2) )S fdeNexp(--V,(c2' )exp(  +_[OBu]O(e )} 

(5) 

2. THE STABILITY 

The following proposition holds. 

Proposition 3 (Stability). There is a positive constant E such that for 
each N >/0 and A 

e--EIAJ <~ Z (N) <~ eZlAI 
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We are going to derive this proposition as a corollary of Lemma 2 which, in 
turn, can be derived using only statistical mechanics arguments. 

Lemma 2. There exists a summable sequence of positive numbers 
(EN) N >1 such that for each N > 1 and A, 

exp( -  V(ff -') - ENIA]) < f dP exp(- < exp( -  V~A N-') + Ew]A[) 

(6) 
In fact we can write Z~ N) in the form f d P o .  �9 �9 fdPN exp(-- VA c~)) and 
apply Eq. (6) repeatedly for N/> 1. We are led to the trivial case V~ ~ = 0 
and then the proposition follows putting E = ~v~>lE~v. 

Proof. We introduce the infinite square grid GN, paved by QN, 
formed by strips of breadth 2 - g  and having a spacing of 8N72 -N. We call 
D N the squares individuated by GN and write 

• I1 exp(-E(N) ~ DN nA, (7) 

The Markov property of PN allows to evaluate the internal integral as a 
product of integrals in the conditioned measure PN(O[]N): 

I7i ;dPN(ODu)exp(-- v(N) "~ �9 r2unA ] 
D N A A : # O . ,  

We apply the second-order Taylor formula to the function of k 
logfdPu(~V1U)exp(_ v'(N) ~ with initial point X = 0: �9 U]N n A)~ 

f dPN(OV1N)exp(-- V~:)A)= e x p [ -  f dPN(OElN)V~)A + ~.V'lNf3 A ] 

The rest en. n A is easily bounded: 

[eDucaAI <~ (XaN4]I-IN f'l Al)2exp(4XaN~ltBN n AI) 

= n AI 

We apply Eq. (3) of Lemma 1 and get 

f deN(OVlN)exp( - (N) ~ v .oA) r - f aeN(ot ,d 

-- V (N-I)- 0(N222 -2N N42Ne-N)[E]N n All (=~\t~)nA -+ + (8) 
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Using the Taylor formula in the reverse direction we find 

exp[ -- f dPu(a[]u) V(N) V~nAj] 

5 fdeN(aD~)exp(-.(N) , v~N hA) exp[ ___ O(N222-2N)ID ~ m All 

and so the bound (8) becomes 

f aPu(a~N)exp(_ - (u) , vD,,~a) ~ f dPu(an~)exp(- "ve.oA , 

• exp ( -  V (N-(D.\N~) n A ] ' )  ] exp[ _+ O(N 222-2N + N42Ne - N)IE3 u n All 
Equation (7) and the above bound give 

f dPN exp( -  V~ u)) 

~ exp( -  V (N-l))fdPNexp(- V(A~2O~ )exp[ +-(1/3)ENIAI] (9) 

where we have put A ~  U D u n A @ O ( I [ ] N \ ~ ] N ) ( - ] A  a n d  EN= 
30(N222-2N+ u42Ne-U). We are so led to evaluate fdPNexp( - V~)Ao). 
We apply the bound just obtained introducing a new grid G l ,  with the 
same spacing of GN, whose vertices are at the centers of the squares r~ u. In 
place of A~ we will find A~v and so we are led to evaluate fdPu exp(-- 
V~2O\A;, ). A further application of Eq. (9) with an obvious choice of the 
grid G~ reduces the estimate to the trivial case A\A~ 2 = O and 
gives Eq. (6). �9 

In the proof of the lemma we do not make essential use of the 
positivity of A; we could consider the general case introducing only obvious 
modifications. 

The technique used in the proof can be suitably extended to show the 
asymptotic convergence of the formal Taylor series in X of p~N), that we 
write 

~ rt" v(N) .  k) 
k = 0 " ~ t  ~ ~," A , 

In other words we have to show that for each t 

exp IAIk~__o ~-i-.~ E (VA(m;k) - E,(X)IA I < zA (N) 

< exp [A[ ~-. ~ t" ~ ' E,(X)IAI 00)  

where Et(X) = o(Xt). 
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For t = 1 the above assertion is 

exp[ - E,(X)IAI] < zA (~r < exp[El(h)lAI] 

with El(h ) = o(h). To get this result we have only to show, by Proposition 3, 
that E---o(h). We observe, referring to the proof of Lemma 2, and in 
particular to Eq. (9), that E u is the sum of two contributions: the first 
deriving from e[]~ hA, the second from Eq. (3). The first is O(h z) because we 
have used the second-order Taylor formula; the second is O(h) but it can 
be done smaller easily. In fact we define, fixed t, 

CN(h) = (A~IA ~ n C ~ O ,  dN(AN, B~v ) < Ntlog(e + l /h ) ) ;  

so the coefficient of tCNI in Eq. (2) is O(hh iN) and gives a contribution 
O(h t+l) to E. To guarantee the applicability of Eq. (9) we must choose for 
the grid GN a spacing 8N72-Utlog(e + l /h).  This implies that the contribu- 
tion of s to E is now O(X210g2(e + l/X)), In the general case Eq. (10) 
can be shown in the following way: we need introduce the interaction 

- ~-T~ ~,A , 
k = O  " 

and prove that the related partition function Z (N't) satisfies 

exp[ - EdX)IAI] < zA (N,0 < exp[ Et(h)IA[] 
which is precisely Eq. (10). For the proof we refer to the second reference in 
Ref. 1 in which explicit computations are made for the Gaussian case. 

3. THE PRESSURE 

We prove Proposition 1 by the two following points: 
(1) For each A, p(a lv) has a limit when N tends to infinity; 
(2) The sequence p~n) has a limit when A tends to infinity (Van Hove) 

and the limit is reached uniformly in N. 
A first step in the proof of point (1) can be easily done: it is the 

monotonicity in N of p~N). We write 

1 log fdP<U-1)fdPuexp( - g~ ~'') PkN> = [AI 
and apply the Jensen inequality and Eq. (1): 

f dPNexp(--V(A~)) >>.exp(- f dPuV(ff))---exp(-V(A ~-~ 
and so 

p~N) >/ p(AN- O 

The stability implies the boundedness of the sequencep~ N>, and so point (1) 
follows. 
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We solve the problem in point (2) using the usual strategy for the proof 
of the existence of the thermodynamic limit(6): we first show in Lemma 3 
that the limit in A of p(a N) exists and is reached uniformly in N for a 
particular sequence of squares, then extend this result to any Van Hove 
sequence. Such an extension is in our case obvious and we do not expose it. 

Lemrna  3. Let (As}s> 1 be the sequence of the squares, paved by Qo, 
with sides a s = 4(2 s - 1). Then the limit 

lim p~N) 
$--'> 00 s 

exists and is uniform in N. 

Proof. We observe that from as+l= 2a s + 4, A,+ l can be divided 
into four squares A~, i = 1 . . . . .  4, having distance 1 from the boundary of 
A,+ 1 and distance 2 between them. Our aim is to show that for each N 

Z ( N ) 4  exp[ - H(IA,+ l[\4[A,[) ] < Z~+ ), < Z ( N ) 4  exp[ H(IAs+ ll\4[As[)] 

(11) 

where H is a positive constant (independent of N and s). In fact from this 
equation we get 

( ) p(u) _,,(u)i < leas I IA,+,l + H 
, A,+, r A , ,  (U) 1 4IA'[ [As+ll 4[A'l 

�9 I A , + l l  

By the stability , (N) < E and so the right-hand member is bounded by a F A s  
sequence in s, independent of N, that for the particular choice of {A s } s>l is 
summable. This implies that :p(N/~ is a Cauchy sequence and reaches /. A s g s ~  1 
its limit uniformly in N. 

In order to show Eq. (11) we put B = O~=lA ~, C= As+lkB and 
pO:)(B ) N = I'ik=oPk(Bk), where B~ = (A k I Ak C B }. We introduce a condi- 
tioning over B: 

Z As+,(u) e x p ( -  )fd? (~)(B) exp( ) (12) = f d? vT> - 'r 

and prove that there is a positive constant D such that 

f de (U) (B)exp( -  V<c::) ) N exp(_+ DIOB] + EICI ) (13) 

where [0B[ is the length of the boundary of B. In fact, by Lemma 1, Eq. 
(4), we have 

f aeNf.  )exp(- vgo ) f 
• e x p ( -  Vc (N))exp(  +_[OB~]O(N52 -2u + e-V))  
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F rom  that and Lemma  2 

f dPu(B u ) e x p ( -  V (u) ) ~ e x p ( -  V (N-l)) 

• exp{ +--E~ICI-X_ [OBNJO(N'2 -zN + e - N ) }  

Iterating on N, and using [OBN] = 10B 12 N, Eq. (13) follows. Equat ion (12) 
becomes 

Z(lv)A.., ~ f dP(s)  e x p ( -  V (N).U iA~ )exp[ ~--(E + D )(IAs+ 11- 41A,[)] 

It  remains to show 

f d P  (N) e x p ( -  V(dVA): ) r z (N)4exp[  +_4FIOA, I ] 

where F is a positive constant.  We introduce a condit ioning over A~ and 
write 

f d P  (N) e x p ( -  V(N), ' A, (,3 I~IA ~ ) u,A, ! = f dP(N) exp(- -  V(~ ) ) f dP(N)(A1)exp(- V(N) 
Proceeding as before we are led to apply Eq. (5) of L emma  1, and iterating 
on N we get 

f . .  _ 

Jde ( l v ) (A2)exp ( -  V (N) . , �9 ) % fdP(") exp(- V(.N) )exp(+_ fl0A2l) 
F r o m  that  the lemma follows. 
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