Ising-Like Field Theory

C. Cammarota ${ }^{1}$

Received January 29, 1980

Abstract

A field theory model on R^{2} in which the basic fields are Ising spins instead of Gaussian spins is examined. Using statistical mechanics techniques we discuss the ultraviolet and the infrared problems. In particular we discuss a technique yielding the asymptotic expansion in λ of the ground state energy, as $\lambda \rightarrow 0$, without using the cluster expansion.

KEY WORDS: Ising model; field theory model; stability; pressure; ultraviolet divergence; infrared divergence.

1. INTRODUCTION AND DESCRIPTION OF THE MODEL

We propose a field theory model which allows us to clarify the statistical mechanics aspects of the ultraviolet and infrared problems that occur in φ^{4} Euclidean field theory. In recent years the Markov hierarchical model ${ }^{(1)}$ has been introduced with the same purpose. Our model relies on the same basic idea, i.e., to decompose the field in elementary fields of well-defined distribution, but we use Ising model fields at large temperatures instead of Gaussian fields. We will show in two space-time dimensions the stability of the model and the existence of the pressure, corresponding to the ground state density of energy. In the case of the Markov hierarchical model the stability has been shown in two and three dimensions; the existence of the pressure is still an open problem.

We now give a description of the model. Q_{N} is a partition of R^{2} obtained paving the plane with square tesserae of side 2^{-N}; we choose the sequence $\left\{Q_{N}\right\}_{N \geqslant 0}$ such that each tessera $\Delta_{N} \in Q_{N}$ is exactly paved by tesserae of Q_{N+1}. We consider over the σ algebra generated by the

[^0]cylinders of $\Omega_{N}=\{-1,1\}^{Q_{N}}$ the equilibrium measure P_{N} of the Ising model over Q_{N} at large temperature β^{-1} and zero external field. ${ }^{(2)}$ Let us define the space $\Omega^{(N)}=\prod_{k=0}^{N} \Omega_{k}$ and the product measure $P^{(N)}=\prod_{k=0}^{N} P_{k}$. We then assume as free field with ultraviolet cutoff the family of random variables over $\Omega^{(N)}$ indexed by R^{2} defined by
$$
\varphi_{\xi}^{(N)}=\sum_{k=0}^{N} \sigma_{\Delta_{k}(\xi)}, \quad \xi \in R^{2}
$$
where $\Delta_{k}(\xi)$ is the tessera of Q_{k} containing ξ and $\sigma_{\Delta_{k}} \in\{-1,1\}$ denotes the Ising spin variable at Δ_{k}, and also its natural extension to a random variable over $\Omega^{(N)}$.

There are some obvious remarks. The field $\varphi_{\xi}^{(N)}, \xi \in R^{2}$, is the sum of $N+1$ independent fields and

$$
\left|\varphi_{\xi}^{(N)}\right| \leqslant N+1
$$

$\varphi^{(N)}$ is constant in each tessera Δ_{N}; it has zero mean

$$
\left\langle\varphi_{\xi}^{(N)}\right\rangle=0
$$

and covariance

$$
\left\langle\varphi_{\xi}^{(N)} \varphi_{\eta}^{(N)}\right\rangle=\sum_{k=0}^{N}\left\langle\sigma_{\Delta_{k}(\xi)} \sigma_{\Delta_{k}(\eta)}\right\rangle
$$

The covariance has a sort of logarithmic divergence as $|\xi-\eta| \rightarrow 0$ because if $\xi, \eta \in \Delta_{N-1}$ and $|\xi-\eta|>2^{-N}$, it follows that

$$
\left\langle\varphi_{\xi^{(N)}} \varphi_{\eta}^{(N)}\right\rangle>\log _{2}|\xi-\eta|^{-1}
$$

Since we want to study an interacting theory of φ^{4} type, we must introduce an interaction containing subtractions depending on the measure $P^{(N)}$ we have chosen. This can be done using the general definition of Wick powers contained in Ref. 3, as summarized below.

If x is a random variable over (X, Σ, μ) with finite moments, the Wick powers of x are defined recursively by

$$
\begin{aligned}
: x^{0}: & =1 \\
\frac{d}{d x}: x^{n}: & =n: x^{n-1}: \quad(n \geqslant 1) \\
\left\langle: x^{n}:\right\rangle & =0 \quad(n \geqslant 1)
\end{aligned}
$$

We obtain, for instance, if $\left\langle x^{k}\right\rangle=0$ for k odd,

$$
: x^{4}:=x^{4}-6\left\langle x^{2}\right\rangle x^{2}-\left\langle x^{4}\right\rangle+6\left\langle x^{2}\right\rangle^{2}
$$

So we have, for each $N \geqslant 0$, after an easy computation,

$$
: \varphi_{\xi}^{(N) 4}:=\varphi_{\xi}^{(N) 4}-6(N+1) \varphi_{\xi}^{(N) 2}+3 N^{2}+8 N+5
$$

We define the renormalized interaction as

$$
V_{\Lambda}^{(N)}=\lambda \int_{\Lambda} d \xi: \varphi_{\xi}^{(N) 4}:
$$

where λ is a positive constant and Λ is a bounded regular region of R^{2}. $V_{\Lambda}^{(N)}$ enjoys the following property that will be central in removing the ultraviolet divergence

$$
\begin{equation*}
\int d P_{N} V_{\Lambda}^{(N)}=V_{\Lambda}^{(N-1)} \tag{1}
\end{equation*}
$$

This follows from the equation that holds if x and y are independent:

$$
:(x+y)^{n}:=\sum_{k=0}^{n}\binom{n}{k}: x^{k}:: y^{n-k}:
$$

putting $\varphi_{\xi}^{(N)}=\varphi_{\xi}^{(N-1)}+\sigma_{\Delta_{N}(\xi)}$. Furthermore there is a constant $a>0$ such that for $N \geqslant 0$

$$
\left|V_{\Lambda}^{(N)}\right| \leqslant \lambda a N^{4}|\Lambda|
$$

where $|\Lambda|$ is the area of Λ.
The partition function is

$$
Z_{\Lambda}^{(N)}=\int d P^{(N)} e^{-V_{\Lambda}^{(N)}}
$$

and the pressure with ultraviolet and infrared cutoff is

$$
p_{\Lambda}^{(N)}=\frac{1}{|\Lambda|} \log Z_{\Lambda}^{(N)}
$$

We work in a range of temperature given by $\beta \leqslant \beta_{0}$, where β_{0}, defined below, is smaller than the inverse critical temperature. The following proposition is our result.

Proposition 1 (Existence of the Pressure). Let $\beta \leqslant \beta_{0}$; then the limit

$$
\lim _{\substack{N \rightarrow \infty \\ \Lambda \rightarrow \infty}} p_{\Lambda}^{(N)}
$$

exists if the limit in Λ is taken in the sense of Van Hove. (For the Van Hove limit see Ref. 4.) In the proof we will use some important properties of the measure P_{N}, well known in the theory of the two-dimensional Ising model. We expose them briefly.

Denote by Λ_{N} a finite subset of R^{2} paved by $Q_{N}, \tilde{\Lambda}_{N}$ its complement, and $\partial \Lambda_{N}$ the external boundary of Λ_{N} thought of as a subset of Q_{N}. Let $\sigma_{\Lambda_{N}}$ and $\sigma_{\Lambda_{N}}$ be configurations over Λ_{N} and $\tilde{\Lambda}_{N}$ and $P_{N}\left(d \sigma_{\Lambda_{N}} \mid \sigma_{\Lambda_{N}}\right)$ the conditional probability of the cylindrical event defined by $\sigma_{\Lambda_{N}}$ with respect to the σ algebra of the events with base in $\tilde{\Lambda}_{N} . P_{N}$ has the Markov property, i.e.,

$$
P_{N}\left(d \sigma_{\Lambda_{N}} \mid \sigma_{\Lambda_{N}}\right)=P_{N}\left(d \sigma_{\Lambda_{N}} \mid \sigma_{\partial \Lambda_{N}}\right)
$$

Let Λ_{N}^{\prime} be a finite subset at a distance $d_{N}\left(\Lambda_{N}, \Lambda_{N}^{\prime}\right)$ from Λ_{N}, where d_{N} is the Euclidean distance in units of 2^{-N}. We define $\eta\left(\sigma_{\Lambda_{N}}, \sigma_{\Lambda_{N}^{\prime}}\right)$ such that

$$
P_{N}\left(d \sigma_{\Lambda_{N}} \mid \sigma_{\Lambda_{N}^{\prime}}\right)=P_{N}\left(d \sigma_{\Lambda_{N}}\right) \exp \eta\left(\sigma_{\Lambda_{N}}, \sigma_{\Lambda_{N}^{\prime}}\right)
$$

The following proposition holds. ${ }^{(5)}$
Proposition 2. There is a positive constant A and a function $\chi(\beta)$ such that $\lim _{\beta \rightarrow 0} \chi(\beta)=+\infty$ and

$$
\left|\eta\left(\sigma_{\Lambda_{N}}, \sigma_{\Lambda_{N}^{\prime}}\right)\right| \leqslant \min \left\{\left[\partial \Lambda_{N}\right],\left[\partial \Lambda_{N}^{\prime}\right]\right\} A \exp \left[-\chi(\beta) d_{N}\left(\Lambda_{N}, \Lambda_{N}^{\prime}\right)\right]
$$

($\left[\partial \Lambda_{N}\right]$ is the number of tesserae of $\partial \Lambda_{N}$.)
This proposition allows us to relate the integrals $\int d P_{N} V_{C_{N}}^{(N)}$ and $\int d P_{N} \exp \left(-V_{C_{N}}^{(N)}\right)$ to the conditioned integrals $\int d P_{N}\left(B_{N}\right) V_{C_{N}}^{(N)}$ and $\int d P_{N}\left(B_{N}\right) \exp \left(-V_{C_{N}}^{(N)}\right)$, where the sequences of sets $\left\{B_{N}\right\}_{N \geqslant 1}$ and $\left\{C_{N}\right\}_{N \geqslant 1}$ are such that: the sequences of their areas are bounded, the sets $\left\{\Delta_{N} \mid \Delta_{N} \cap B_{N} \neq \emptyset\right\}$ and $\left\{\Delta_{N} \mid \Delta_{N} \cap C_{N} \neq \emptyset\right\}$ are disjoint, $\left[\partial B_{N}\right]=0\left(2^{N}\right)$, and $P_{N}\left(B_{N}\right)$ denotes the measure P_{N} conditioned to the variables over the set $\left\{\Delta_{N} \mid \Delta_{N} \cap B_{N} \neq \emptyset\right\}$.

In the case $d\left(B_{N}, C_{N}\right)>1$, Proposition 2, with $d_{N}\left(B_{N}, C_{N}\right)>2^{N}$ gives, introducing an obvious notation,

$$
\begin{aligned}
& \int d P_{N}\left(B_{N}\right) \exp \left[-V_{C_{N}}^{(N)}\right] \\
& \quad \lessgtr \int d P_{N} \exp \left[-V_{C_{N}}^{(N)}\right] \exp \left\{ \pm\left[\partial B_{N}\right] A \exp \left[-\chi(\beta) 2^{N}\right]\right\}
\end{aligned}
$$

Let be β_{0} such that for $\beta \leqslant \beta_{0}, \chi(\beta)>1$. In this range of temperature, which we assume from now on, the argument of the exponential is [∂B_{N}] $O\left(e^{-2^{N}}\right)$. In the general case we introduce $\bar{C}_{N}=\left\{\Delta_{N} \cap C_{N} \neq \varnothing \mid d_{N}\left(\Delta_{N}, B_{N}\right)\right.$ $\leqslant N\}$, decompose the energy

$$
V_{C_{N}}^{(N)}=V_{\bar{C}_{N}}^{(N)}+V_{C_{N} \backslash \bar{C}_{N}}^{(N}
$$

and write

$$
\int d P_{N}\left(B_{N}\right) V_{C_{N}}^{(N)}=\int d P_{N}\left(B_{N}\right) V_{C_{N}}^{(N)}+\int d P_{N}\left(B_{N}\right) V_{C_{N} \backslash \bar{C}_{N}}^{(N)}
$$

We apply Proposition 2 , with $d_{N}\left(B_{N}, C_{N} \backslash \bar{C}_{N}\right)>N$:

$$
\begin{equation*}
\left|\int d P_{N}\left(B_{N}\right) V_{C_{N} \backslash C_{N}}^{(N)}-\int d P_{N} V_{C_{N} \backslash C_{N}}^{(N)}\right| \leqslant \lambda a N^{4}\left|C_{N}\right| \exp \left(A\left[\partial B_{N}\right] e^{-N}\right)-1 \mid \tag{2}
\end{equation*}
$$

Using Eq. (1) we can write

$$
\int d P_{N}\left(B_{N}\right) V_{C_{N}}^{(N)} \lessgtr \int d P_{N}\left(B_{N}\right) V_{\bar{C}_{N}}^{(N)}+V_{C_{N}}^{\left(N-\bar{C}_{N}\right)} \pm O\left(N^{4} 2^{N} e^{-N}\right)\left|C_{N}\right|
$$

From

$$
\left|V_{\bar{C}_{N}}^{(N)}\right| \leqslant \lambda a N^{4}\left|\bar{C}_{N}\right|
$$

we hàve

$$
\int d P_{N}\left(B_{N}\right) \exp \left(-V_{C_{N}}^{(N)}\right) \lessgtr \int d P_{N}\left(B_{N}\right) \exp \left(-V_{C_{N}}^{(N) C_{N}}\right) \exp \left(\pm \lambda a N^{4}\left|\bar{C}_{N}\right|\right)
$$

We can conveniently estimate the error in the case that

$$
\left|\left\{\Delta_{N} \mid d\left(\Delta_{N}, B_{N}\right) \leqslant N\right\}\right|=\left[\partial B_{N}\right] O\left(N 2^{-2 N}\right)
$$

In fact we have, a fortiori, $\left|\bar{C}_{N}\right|=O\left(N 2^{-N}\right)$ and so the error is $O\left(N^{5} 2^{-N}\right)$. Using Proposition 2 we find

$$
\int d P_{N}\left(B_{N}\right) \exp \left(-V_{C_{N} N \bar{C}_{N}}^{(N)}\right) \lessgtr \int d P_{N} \exp \left(-V_{\left.C_{N}\right)}^{(N) C_{N}}\right) \exp \left(\pm A\left[\partial B_{N}\right] e^{-N}\right)
$$

and finally we can write

$$
\begin{aligned}
& \int d P_{N}\left(B_{N}\right) \exp \left(-V_{C_{N}}^{(N)}\right) \\
& \quad \lessgtr \int d P_{N} \exp \left(-V_{C_{N}}^{(N)}\right) \exp \left(\pm 2 \lambda a N^{4}\left|\bar{C}_{N}\right| \pm A\left[\partial B_{N}\right] e^{-N}\right)
\end{aligned}
$$

We summarize the above considerations, which are the basic ingredients in the proof of our results, in the following lemma.

Lemma 1. Let be $\beta \leqslant \beta_{0}$:

$$
\begin{equation*}
\int d P_{N}\left(B_{N}\right) V_{C_{N}}^{(N)} \lessgtr \int d P_{N}\left(B_{N}\right) V_{C_{N}}^{(N)}+V_{C_{N}}^{\left(N \bar{C}_{N}^{1}\right.} \pm O\left(N^{4} 2^{N} e^{-N}\right)\left|C_{N}\right| \tag{3}
\end{equation*}
$$

If $\left\{B_{N}\right\}_{N \geqslant 1}$ is such that $\left|\left\{\Delta_{N} \mid d_{N}\left(\Delta_{N}, B_{N}\right) \leqslant N\right\}\right|=\left[\partial B_{N}\right] O\left(N 2^{-2 N}\right)$, then

$$
\begin{align*}
& \int d P_{N}\left(B_{N}\right) \exp \left(-V_{C_{N}}^{(N)}\right) \\
& \quad \lessgtr \int d P_{N} \exp \left(-V_{C_{N}}^{(N)}\right) \exp \left\{ \pm\left[\partial B_{N}\right] O\left(N^{5} 2^{-2 N}+e^{-N}\right)\right\} \tag{4}
\end{align*}
$$

If $d\left(B_{N}, C_{N}\right)>1$, then

$$
\begin{equation*}
\int d P_{N}\left(B_{N}\right) \exp \left(-V_{C_{N}}^{(N)}\right) \lessgtr \int d P_{N} \exp \left(-V_{C_{N}}^{(N)}\right) \exp \left\{ \pm\left[\partial B_{N}\right] O\left(e^{-2^{N}}\right)\right\} \tag{5}
\end{equation*}
$$

2. THE STABILITY

The following proposition holds.
Proposition 3 (Stability). There is a positive constant E such that for each $N \geqslant 0$ and Λ

$$
e^{-E[\Lambda \mid} \leqslant Z_{\Lambda}^{(N)} \leqslant e^{E|\Lambda|}
$$

We are going to derive this proposition as a corollary of Lemma 2 which, in turn, can be derived using only statistical mechanics arguments.

Lemma 2. There exists a summable sequence of positive numbers $\left\{E_{N}\right\}_{N \geqslant 1}$ such that for each $N \geqslant 1$ and Λ,

$$
\begin{equation*}
\exp \left(-V_{\Lambda}^{(N-1)}-E_{N}|\Lambda|\right) \leqslant \int d P_{N} \exp \left(-V_{\Lambda}^{(N)}\right) \leqslant \exp \left(-V_{\Lambda}^{(N-1)}+E_{N}|\Lambda|\right) \tag{6}
\end{equation*}
$$

In fact we can write $Z_{\Lambda}^{(N)}$ in the form $\int d P_{0} \cdots \int d P_{N} \exp \left(-V_{\Lambda}^{(N)}\right)$ and apply Eq. (6) repeatedly for $N \geqslant 1$. We are led to the trivial case $V_{\Lambda}^{(0)}=0$ and then the proposition follows putting $E=\sum_{N \geqslant 1} E_{N}$.

Proof. We introduce the infinite square grid G_{N}, paved by Q_{N}, formed by strips of breadth 2^{-N} and having a spacing of $8 N^{7} 2^{-N}$. We call \square_{N} the squares individuated by G_{N} and write

$$
\begin{align*}
\int d P_{N} \exp \left(-V_{\Lambda}^{(N)}\right)= & \int d P_{N} \exp \left(-V_{G_{N} \cap \Lambda}^{(N)}\right) \\
& \times \int d P_{N}\left(G_{N} \cap \Lambda\right) \prod_{\square_{N} \cap \Lambda \neq \varnothing} \exp \left(-V_{\square_{N} \cap \Lambda}^{(N)}\right) \tag{7}
\end{align*}
$$

The Markov property of P_{N} allows to evaluate the internal integral as a product of integrals in the conditioned measure $P_{N}\left(\partial \square_{N}\right)$:

$$
\prod_{\square_{N} \cap \Lambda \neq \varnothing} \int d P_{N}\left(\partial \square_{N}\right) \exp \left(-V_{\square_{N} \cap \Lambda}^{(N)}\right)
$$

We apply the second-order Taylor formula to the function of λ $\log \int d P_{N}\left(\partial \square_{N}\right) \exp \left(-V_{\square_{N} \cap \mathrm{~N}}^{(N)}\right)$, with initial point $\lambda=0$:

$$
\int d P_{N}\left(\partial \square_{N}\right) \exp \left(-V_{\square_{N} \cap \Lambda}^{(N)}\right)=\exp \left[-\int d P_{N}\left(\partial \square_{N}\right) V_{\square_{N} \cap \Lambda}^{(N)}+\epsilon_{\square_{N} \cap \Lambda}\right]
$$

The rest $\epsilon_{\square_{N} \cap \Lambda}$ is easily bounded:

$$
\begin{aligned}
\left|\epsilon_{\square_{N} \cap \Lambda}\right| & \leqslant\left(\lambda a N^{4}\left|\square_{N} \cap \Lambda\right|\right)^{2} \exp \left(4 \lambda a N^{4}\left|\square_{N} \cap \Lambda\right|\right) \\
& =O\left(N^{22} 2^{-2 N}\right)\left|\square_{N} \cap \Lambda\right|
\end{aligned}
$$

We apply Eq. (3) of Lemma 1 and get

$$
\begin{align*}
& \int d P_{N}\left(\partial \square_{N}\right) \exp \left(-V_{\square_{N} \cap \Lambda}^{(N)}\right) \lessgtr \exp \left[-\int d P_{N}\left(\partial \square_{N}\right) V_{\square_{N} \cap \Lambda}^{(N)}\right. \\
& \left.\quad-V_{\left(\square_{N}, \bar{\square}_{N}\right) \cap \Lambda}^{(N-1)} \pm O\left(N^{22} 2^{-2 N}+N^{4} 2^{N} e^{-N}\right) \square_{N} \cap \Lambda \mid\right] \tag{8}
\end{align*}
$$

Using the Taylor formula in the reverse direction we find

$$
\begin{aligned}
& \exp \left[-\int d P_{N}\left(\partial \square_{N}\right) V_{\bar{\square}_{N} \cap \Lambda}^{(N)}\right] \\
& \quad \lessgtr \int d P_{N}\left(\partial \square_{N}\right) \exp \left(-V_{\bar{\square}_{N} \cap \Lambda}^{(N)}\right) \exp \left[\pm O\left(N^{22} 2^{-2 N}\right)\left|\square_{N} \cap \Lambda\right|\right]
\end{aligned}
$$

and so the bound (8) becomes

$$
\begin{aligned}
& \int d P_{N}\left(\partial \square_{N}\right) \exp \left(-V_{\square_{N} \cap \Lambda}^{(N)}\right) \lessgtr \int d P_{N}\left(\partial \square_{N}\right) \exp \left(-V_{\square_{N} \cap \Lambda}^{(N)}\right) \\
& \quad \times \exp \left(-V_{\left(\square_{N}\left(\square_{N}\right) \cap \Lambda\right.}^{(N-1)}\right) \exp \left[\pm O\left(N^{22} 2^{-2 N}+N^{4} 2^{N} e^{-N}\right)\left|\square_{N} \cap \Lambda\right|\right]
\end{aligned}
$$

Equation (7) and the above bound give

$$
\begin{align*}
& \int d P_{N} \exp \left(-V_{\Lambda}^{(N)}\right) \\
& \quad \varsigma \exp \left(-V_{\Lambda_{N}^{N}}^{(N-1)}\right) \int d P_{N} \exp \left(-V_{\Lambda \backslash \Lambda_{N}^{o}}^{(N)}\right) \exp \left[\pm(1 / 3) E_{N}|\Lambda|\right] \tag{9}
\end{align*}
$$

where we have put $\Lambda_{N}^{0}=\cup_{\square_{N} \cap \Lambda \neq \varnothing}\left(\square_{N} \backslash \bar{\square}_{N}\right) \cap \Lambda$ and $E_{N}=$ $3 O\left(N^{22} 2^{-2 N}+N^{4} 2^{N} e^{-N}\right)$. We are so led to evaluate $\int d P_{N} \exp \left(-V_{\Lambda}^{(N)} \Lambda_{N}\right)$. We apply the bound just obtained introducing a new grid G_{N}^{1}, with the same spacing of G_{N}, whose vertices are at the centers of the squares \square_{N}. In place of Λ_{N}^{0} we will find Λ_{N}^{1} and so we are led to evaluate $\int d P_{N} \exp (-$ $V_{\Lambda \backslash \Lambda_{N}^{o}\left(\Lambda_{N}^{\prime} N\right.}^{(N)}$. A further application of Eq. (9) with an obvious choice of the grid G_{N}^{2} reduces the estimate to the trivial case $\Lambda \backslash \Lambda_{N}^{0} \backslash \Lambda_{N}^{1} \backslash \Lambda_{N}^{2}=\varnothing$ and gives Eq. (6).

In the proof of the lemma we do not make essential use of the positivity of λ; we could consider the general case introducing only obvious modifications.

The technique used in the proof can be suitably extended to show the asymptotic convergence of the formal Taylor series in λ of $p_{\Lambda}^{(N)}$, that we write

$$
\sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!} \epsilon^{T}\left(V_{\Lambda}^{(N)} ; k\right)
$$

In other words we have to show that for each t

$$
\begin{align*}
\exp \left[|\Lambda| \sum_{k=0}^{t} \frac{\lambda^{k}}{k!} \epsilon^{T}\left(V_{\Lambda}^{(N)} ; k\right)-E_{t}(\lambda)|\Lambda|\right] & \leqslant Z_{\Lambda}^{(N)} \\
& \leqslant \exp \left[|\Lambda| \sum_{k=0}^{t} \frac{\lambda^{k}}{k!} \epsilon^{T}\left(V_{\Lambda}^{(N)} ; k\right)+E_{t}(\lambda)|\Lambda|\right] \tag{10}
\end{align*}
$$

where $E_{t}(\lambda)=o\left(\lambda^{t}\right)$.

For $t=1$ the above assertion is

$$
\exp \left[-E_{1}(\lambda)|\Lambda|\right] \leqslant Z_{\Lambda}^{(N)} \leqslant \exp \left[E_{1}(\lambda)|\Lambda|\right]
$$

with $E_{1}(\lambda)=o(\lambda)$. To get this result we have only to show, by Proposition 3, that $E=o(\lambda)$. We observe, referring to the proof of Lemma 2, and in particular to Eq. (9), that E_{N} is the sum of two contributions: the first deriving from $\epsilon_{\square_{N} \cap \Lambda}$, the second from Eq. (3). The first is $O\left(\lambda^{2}\right)$ because we have used the second-order Taylor formula; the second is $O(\lambda)$ but it can be done smaller easily. In fact we define, fixed t,

$$
\bar{C}_{N}(\lambda)=\left\{\Delta_{N} \mid \Delta_{N} \cap C_{N} \neq \emptyset, \quad d_{N}\left(\Delta_{N}, B_{N}\right) \leqslant N t \log (e+1 / \lambda)\right\} ;
$$

so the coefficient of $\left|C_{N}\right|$ in Eq. (2) is $O\left(\lambda \lambda^{t N}\right)$ and gives a contribution $O\left(\lambda^{2+1}\right)$ to E. To guarantee the applicability of Eq. (9) we must choose for the grid G_{N} a spacing $8 N^{7} 2^{-N} t \log (e+1 / \lambda)$. This implies that the contribution of $\epsilon_{\square_{N} \cap \Lambda}$ to E is now $O\left(\lambda^{2} \log ^{2}(e+1 / \lambda)\right.$). In the general case Eq. (10) can be shown in the following way: we need introduce the interaction

$$
V_{\Lambda}^{(N, t)}=V_{\Lambda}^{(N)}+|\Lambda| \sum_{k=0}^{t} \frac{\lambda^{k}}{k!} \epsilon^{T}\left(V_{\Lambda}^{(N)} ; k\right)
$$

and prove that the related partition function $Z_{\Lambda}^{(N, t)}$ satisfies

$$
\exp \left[-E_{t}(\lambda)|\Lambda|\right] \leqslant Z_{\Lambda}^{(N, t)} \leqslant \exp \left[E_{t}(\lambda)|\Lambda|\right]
$$

which is precisely Eq. (10). For the proof we refer to the second reference in Ref. 1 in which explicit computations are made for the Gaussian case.

3. THE PRESSURE

We prove Proposition 1 by the two following points:
(1) For each $\Lambda, p_{\Lambda}^{(N)}$ has a limit when N tends to infinity;
(2) The sequence $p_{\Lambda}^{(N)}$ has a limit when Λ tends to infinity (Van Hove) and the limit is reached uniformly in N.

A first step in the proof of point (1) can be easily done: it is the monotonicity in N of $p_{\Lambda}^{(N)}$. We write

$$
p_{\Lambda^{(N)}}=\frac{1}{|\Lambda|} \log \int d P^{(N-1)} \int d P_{N} \exp \left(-V_{\Lambda}^{(N)}\right)
$$

and apply the Jensen inequality and Eq. (1):

$$
\int d P_{N} \exp \left(-V_{\Lambda}^{(N)}\right) \geqslant \exp \left(-\int d P_{N} V_{\Lambda}^{(N)}\right)=\exp \left(-V_{\Lambda}^{(N-1)}\right)
$$

and so

$$
p_{\Lambda}^{(N)} \geqslant p_{\Lambda}^{(N-1)}
$$

The stability implies the boundedness of the sequence $p_{\Lambda}^{(N)}$, and so point (1) follows.

We solve the problem in point (2) using the usual strategy for the proof of the existence of the thermodynamic limit ${ }^{(6)}$: we first show in Lemma 3 that the limit in Λ of $p_{\Lambda}^{(N)}$ exists and is reached uniformly in N for a particular sequence of squares, then extend this result to any Van Hove sequence. Such an extension is in our case obvious and we do not expose it.

Lemma 3. Let $\left\{\Lambda_{s}\right\}_{s \geqslant 1}$ be the sequence of the squares, paved by Q_{0}, with sides $a_{s}=4\left(2^{s}-1\right)$. Then the limit

$$
\lim _{s \rightarrow \infty} p_{\Lambda_{s}}^{(N)}
$$

exists and is uniform in N.
Proof. We observe that from $a_{s+1}=2 a_{s}+4, \Lambda_{s+1}$ can be divided into four squares $\Lambda_{s}^{i}, i=1, \ldots, 4$, having distance 1 from the boundary of Λ_{s+1} and distance 2 between them. Our aim is to show that for each N

$$
\begin{equation*}
Z_{\Lambda_{s}}^{(N) 4} \exp \left[-H\left(\left|\Lambda_{s+1}\right| \backslash 4\left|\Lambda_{s}\right|\right)\right] \leqslant Z_{\Lambda_{s+1}}^{(N)} \leqslant Z_{\Lambda_{s}}^{(N) 4} \exp \left[H\left(\left|\Lambda_{s+1}\right| \backslash 4\left|\Lambda_{s}\right|\right)\right] \tag{11}
\end{equation*}
$$

where H is a positive constant (independent of N and s). In fact from this equation we get

$$
\left|P_{\Lambda_{s+1}}^{(N)}-p_{\Lambda_{s}}^{(N)}\right| \leqslant\left|p_{\Lambda_{s}}^{(N)}\right|\left(1-\frac{4\left|\Lambda_{s}\right|}{\left|\Lambda_{s+1}\right|}\right)+H \frac{\left|\Lambda_{s+1}\right|-4\left|\Lambda_{s}\right|}{\left|\Lambda_{s+1}\right|}
$$

By the stability $\left|p_{\Lambda_{s}}^{(N)}\right| \leqslant E$ and so the right-hand member is bounded by a sequence in s, independent of N, that for the particular choice of $\left\{\Lambda_{s}\right\}_{s \geqslant 1}$ is summable. This implies that $\left\{P_{\Lambda_{s}}^{(N)}\right\}_{s \geqslant 1}$ is a Cauchy sequence and reaches its limit uniformly in N.

In order to show Eq. (11) we put $B=\cup_{i=1}^{4} \Lambda_{s}^{i}, C=\Lambda_{s+1} \backslash B$ and $P^{(N)}(B)=\prod_{k=0}^{N} P_{k}\left(B_{k}\right)$, where $B_{k}=\left\{\Delta_{k} \mid \Delta_{k} \subset B\right\}$. We introduce a conditioning over B :

$$
\begin{equation*}
Z_{\Lambda_{s+1}}^{(N)}=\int d P^{(N)} \exp \left(-V_{B}^{(N)}\right) \int d P^{(N)}(B) \exp \left(-V_{C}^{(N)}\right) \tag{12}
\end{equation*}
$$

and prove that there is a positive constant D such that

$$
\begin{equation*}
\int d P^{(N)}(B) \exp \left(-V_{C}^{(N)}\right) \lessgtr \exp (\pm D|\partial B| \pm E|C|) \tag{13}
\end{equation*}
$$

where $|\partial B|$ is the length of the boundary of B. In fact, by Lemma 1 , Eq. (4), we have

$$
\begin{aligned}
& \int d P_{N}\left(B_{N}\right) \exp \left(-V_{C}^{(N)}\right) \lessgtr \int d P_{N} \\
& \quad \times \exp \left(-V_{C}^{(N)}\right) \exp \left\{ \pm\left[\partial B_{N}\right] O\left(N^{5} 2^{-2 N}+e^{-N}\right)\right\}
\end{aligned}
$$

From that and Lemma 2

$$
\begin{aligned}
& \int d P_{N}\left(B_{N}\right) \exp \left(-V_{C}^{(N)}\right) \lessgtr \exp \left(-V_{C}^{(N-1)}\right) \\
& \quad \times \exp \left\{ \pm E_{N}|C| \pm\left[\partial B_{N}\right] O\left(N^{5} 2^{-2 N}+e^{-N}\right)\right\}
\end{aligned}
$$

Iterating on N, and using $\left[\partial B_{N}\right]=|\partial B| 2^{N}$, Eq. (13) follows. Equation (12) becomes

$$
Z_{\Lambda_{s+1}}^{(N)} \lessgtr \int d P^{(N)} \exp \left(-V_{\bigcup_{i} \Lambda_{s}^{\prime}}^{(N)}\right) \exp \left[\pm(E+D)\left(\left|\Lambda_{s+1}\right|-4 \mid \Lambda_{s}\right)\right]
$$

It remains to show

$$
\int d P^{(N)} \exp \left(-V_{U_{i} \Lambda_{s}^{\prime}}^{(N)}\right) \lessgtr Z_{\Lambda_{s}}^{(N) 4} \exp \left[\pm 4 F\left|\partial \Lambda_{s}\right|\right]
$$

where F is a positive constant. We introduce a conditioning over Λ_{s}^{1} and write

$$
\int d P^{(N)} \exp \left(-V_{\cup_{i} \Lambda_{s}^{\Lambda_{s}}}^{(N)}\right)=\int d P^{(N)} \exp \left(-V_{\Lambda_{j}^{\prime}}^{(N)}\right) \int d P^{(N)}\left(\Lambda_{s}^{1}\right) \exp \left(-V_{U_{i \neq 1} \Lambda_{s}^{i_{s}}}^{(N)}\right)
$$

Proceeding as before we are led to apply Eq. (5) of Lemma 1, and iterating on N we get

$$
\int d P^{(N)}\left(\Lambda_{s}^{1}\right) \exp \left(-V_{U_{i \neq \neq}^{(N)}}^{(N)}\right) \lessgtr \int d P^{(N)} \exp \left(-V_{U_{i \neq \mid}}^{(N)} \Lambda_{s}^{\Lambda_{s}}\right) \exp \left(\pm F\left|\partial \Lambda_{s}^{1}\right|\right)
$$

From that the lemma follows.

ACKNOWLEDGMENTS

I am indebted to G. Gallavotti, E. Presutti, and D. Capocaccia for useful discussions.

REFERENCES

1. G. Gallavotti, Some aspects of the renormalization problems in statistical mechanics and field theory, Memoria Accademia dei Lincei XV (1978), G. Benfatto, M. Cassandro, G. Gallavotti, F. Nicolò, E. Olivieri, E. Presutti, and E. Scacciatelli, Some probabilistic techniques in field theory, Commun. Math. Phys. 59: (1978).
2. O. Landford and D. Ruelle, Commun. Math. Phys. 13:(1969); R. L. Dobrushin, Theory Prob. Appl. 13: (1968); 15:(1970).
3. B. Simon, The $P(\phi)_{2}$ Euclidean Field theory (Princeton University Press, Princeton, New Jersey, 1974).
4. D. Ruelle, Statistical Mechanics (Benjamin, New York, 1969).
5. F. Di Liberto, G. Gallavotti, and L. Russo, Markov processes, Bernoulli schemes and Ising model, Commun. Math. Phys. 33:(1973).
6. M. E. Fisher, The free energy for a macroscopic system, Arch. Rational Mech. Anal. 17: (1964).

[^0]: Supported in part by Consiglio Nazionale delle Ricerche.
 ${ }^{1}$ Istituto Matematico G. Castelnuovo, Università degli Studi di Roma, Piazzale delle Scienze, 00100 Rome, Italy.

